
Lucata Pathfinder is a next-generation computing platform that dramatically improves processing speed and scalability for

sparse Big Data. Adopters can attain deeper graph analytics insights and more accurate and faster artificial intelligence model

training than ever before possible by processing massive datasets without database sharding or data pruning. The Lucata

programming environment empowers the Lucata Migrating Thread technology, enabling commercial and internally developed

applications to leverage the full power of the Lucata platform.

PATHFINDER USAGE OPTIONS

The Lucata Pathfinder hardware platform can power open source, commercial, or custom-developed graph databases using

one of three approaches:

• Library calls to Lucata’a optimized algorithm library that runs natively on Lucata, including Breadth-First Search (BFS),
PageRank, Connected Component, Triangle Count, and K-truss Subgraph

• API calls for GraphBLAS queries supported on the Lucata platform, such as Sparse Matrix Multiply. The public domain
LAGRAPH library provides an extensive collection of functions constructed with this approach.

• Running RedisGraph queries on Lucata using the optimized data loader and RedisGraph application code which have
been ported to Lucata and optimized for use with Lucata Migratory Thread technology

The first two options provide alternatives for organizations that will use Lucata with their own internally developed graph

applications or will modify an open source or commercial graph application to leverage the power of Lucata. The third option

allows existing Redis or RedisGraph users to easily leverage Lucata to run high performance queries on massive graphs using

RedisGraph.

CONTACT US

Contact Lucata now to learn more about the Pathfinder-S for high performance graph analytics.

Please email us at info@lucata.com or call us at 646 661-5252.

LUCATA PROGRAMMING OPTIONS

As a developer, you can quickly build and test code. You can use IDEs and debuggers with libraries based on Intel x86 or use

RedisGraph's graphical interface or the Redis command-line interface. The toolchain and libraries for the Pathfinder system

support program development in C, C++, and Cilk. The emu-cc program in the OpenCilk toolchain manages the compilation of

programs for the Pathfinder system. The OpenCilk toolchain, an open-source cross-compiler managed by the Massachusetts

Institute of Technology (cilk.mit.edu), runs on x86 systems and generates executable programs for the Pathfinder system.

Pathfinder can spawn millions of parallel threads, significantly reducing runtime for enabled applications. You can write parallel

programs with ease using Cilk. You only need to know a few additional simple commands and Pathfinder will handle the

complexities behind the scenes.

PATHFINDER PROGRAMMING: QUICK, EASY AND EFFICIENT

DATASHEET

PATHFINDER-S SOFTWARE SPECIFICATIONS

Operating System Red Hat Enterprise Linux 8.x

System Compiler Lucata C / C++ / OpenCilk LLVM 6 compiler

Optimizing Languages Cilk, C, C++, CilkPlus

Front-end Languages Python 2/3, Java, SQL, any code running on x86

©2021 Copyright Lucata. All rights reserved.

0721/v1.0

Examples of Cilk Parallel Programming Keywords

Attribute Identifies functionality

cilk spawn
Indicates that the function can run in parallel with the caller. Typically, a new thread is spawned to

execute the function.

cilk sync
Causes the parent thread to synchronize with its children by waiting for all of the child threads it created

to return

cilk for Replaces the traditional FOR loop so that loop iterations can execute in parallel.

To reduce the overhead involved in managing threads, the Pathfinder architecture supports thread spawning and thread

synchronization directly in hardware. It does not use the Cilk runtime software.

MEMORY ACCESS: SIMPLIFYING THE PROGRAMMING PROCESS

The Pathfinder architecture implements a Partitioned Global Address Space (PGAS) that simplifies programming. Each memory

location has a unique address that is visible anywhere in the system. Furthermore, the range of addresses need not be

contiguous and the memory may be distributed across various partitions. This memory technology eliminates the need for data

pruning and database sharding and reduces programming complexity by enabling developers to process and analyze data as

one monolithic dataset.

skuntz
Cross-Out

skuntz
Cross-Out

skuntz
Cross-Out
x86

